KATP channels depress force by reducing action potential amplitude in mouse EDL and soleus muscle.

نویسندگان

  • B Gong
  • D Legault
  • T Miki
  • S Seino
  • J M Renaud
چکیده

Although ATP-sensitive K+ (KATP) channel openers depress force, channel blockers have no effect. Furthermore, the effects of channel openers on single action potentials are quite small. These facts raise questions as to whether 1) channel openers reduce force via an activation of KATP channels or via some nonspecific effects and 2) the reduction in force by KATP channels operates by changes in amplitude and duration of the action potential. To answer the first question we tested the hypothesis that pinacidil, a channel opener, does not affect force during fatigue in muscles of Kir6.2-/- mice that have no cell membrane KATP channel activity. When wild-type extensor digitorum longus (EDL) and soleus muscles were stimulated to fatigue with one tetanus per second, pinacidil increased the rate at which force decreased, prevented a rise in resting tension, and improved force recovery. Pinacidil had none of these effects in Kir6.2-/- muscles. To answer the second question, we tested the hypothesis that the effects of KATP channels on membrane excitability are greater during action potential trains than on single action potentials, especially during metabolic stress such as fatigue. During fatigue, M wave areas of control soleus remained constant for 90 s, suggesting no change in action potential amplitude for half of the fatigue period. In the presence of pinacidil, the decrease in M wave areas became significant within 30 s, during which time the rate of fatigue also became significantly faster compared with control muscles. It is therefore concluded that, once activated, KATP channels depress force and that this depression involves a reduction in action potential amplitude.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ACELL February 47/2

Matar, W., T. M. Nosek, D. Wong, and J.-M. Renaud. Pinacidil suppresses contractility and preserves energy but glibenclamide has no effect during muscle fatigue. Am. J. Physiol. Cell Physiol. 278: C404–C416, 2000.—The effects of 10 μM glibenclamide, an ATP-sensitive K1 (KATP) channel blocker, and 100 μM pinacidil, a channel opener, were studied to determine how the KATP channel affects mouse ex...

متن کامل

K+-induced twitch potentiation is not due to longer action potential.

The objective of this study was to determine whether an increased duration of the action potential contributes to the K+-induced twitch potentiation at 37 degrees C. Twitch contractions were elicited by field stimulation, and action potentials were measured with conventional microelectrodes. For mouse extensor digitorum longus (EDL) muscle, twitch force was greater at 7-13 mM K+ than at 4.7 mM ...

متن کامل

Understanding the physiology of the asymptomatic diaphragm of the M1592V hyperkalemic periodic paralysis mouse.

The diaphragm muscle of hyperkalemic periodic paralysis (HyperKPP) patients and of the M1592V HyperKPP mouse model rarely suffers from the myotonic and paralytic symptoms that occur in limb muscles. Enigmatically, HyperKPP diaphragm expresses the mutant NaV1.4 channel and, more importantly, has an abnormally high Na(+) influx similar to that in extensor digitorum longus (EDL) and soleus, two hi...

متن کامل

Pinacidil suppresses contractility and preserves energy but glibenclamide has no effect during muscle fatigue.

The effects of 10 microM glibenclamide, an ATP-sensitive K(+) (K(ATP)) channel blocker, and 100 microM pinacidil, a channel opener, were studied to determine how the K(ATP) channel affects mouse extensor digitorum longus (EDL) and soleus muscle during fatigue. Fatigue was elicited with 200-ms-long tetanic contractions every second. Glibenclamide did not affect rate and extent of fatigue, force ...

متن کامل

Changes of surface and t-tubular membrane excitability during fatigue with repeated tetani in isolated mouse fast- and slow-twitch muscle.

We investigated whether impaired sarcolemmal excitability causes severe fatigue during repeated tetani in isolated mouse skeletal muscle. Slow-twitch soleus or fast-twitch extensor digitorum longus (EDL) muscles underwent intensive stimulation (standard protocol: 125 Hz for 500 ms, every second, parallel plate electrodes, 20 V, 0.1-ms pulses). Interventions with altered stimulation characterist...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Cell physiology

دوره 285 6  شماره 

صفحات  -

تاریخ انتشار 2003